MODELS OF RADIATIVE TRANSFER IN FURNACES*
H. C. Hottel and A. F. Sarofim UDC 532.135

Absolute rigor in the treatment of radiative transfer in furnaces is probably an unattainable
goal, The engineer's problem is to choose an idealization — a mathematical model — which
is consistent with the accuracy desired and/or the time available for the design. The latitude
of choice is in continuous process of being widened, the objectives being the inclusion of more
complete allowance for reality and — sometimes only, alas — a simplification of method, To
illustrate some of the principles of radiative transfer as well as the range of models becom-
ing available, a single furnace cross section, more or less typical, will be chosen for appli-
cation of several models.

The Furnace

Furnaces are typical of enclosures in which radiation is dominant, and fuel-fired furnaces represent
perhaps as complex a problem of heat transfer as exists. A furnace for transferring energy to material
flowing inside tubes will be chosen, representative of that class of furnaces which includes oil-refinery
tube stills, cracking coils and reformers, chemical-plant processing furnaces for catalytic operations in-
side tubes, and gas-fired steam boilers. Let the furnace cross section be that of Fig. 1, chosen to illus-
trate principles with minimum complexity of details. It is to be understood that more typical cross sec-
tions would have the tubes arranged in more complex patterns.

Tube Replacement

The first step in any tube-row furnace problem is to make use of the fact that the tube-to-tube scale
is so small compared to furnace dimensions as to cause the tubes to be more or less isotropically irradi-
ated, The tube row, and its refractory backing if any, can then be replaced by an equivalent gray plane
operating at tube-surface temperature. Several steps are involved. The interchange area S, S between
two adjacent tubes a and b (their direct interchange per unit difference in emissive power) is given by

s o () (S]] 5]

From this the fraction Fpy of isotropic radiation passing through a plane P, close to and parallel to the
tubes, which is intercepted by the tubes is readily obtained. It is
xD  §.5,

Fer=%c——¢ @

If the tubes are black and their refractory backing in radiative equilibrium, the fraction of the radiation
passing through P towards the tubes which is intercepted by the tubes directly as well as by reradiation or
diffuse reflection from the refractory backing is FPT’ given by

Fpr = Fpr (2— Fer). ®)

Finally, if the tubes are gray Lambert surfaces (diffusely reflecting) of emissivity &, the fraction of the
radiation passing through P which is absorbed by the tubes by all mechanisms — direct irradiation, mul-
tiple reflection between tubes and between tubes and refractory, and reradiation from refractory — may be
thought of as the equivalent absorptivity or emissivity €' of an equivalent gray plane replacing the tube-re-
fractory backing system, given by
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Fig. 1. a) Furnace cross section; b) roof-tube detail,
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The derivations of Egs. (1)-(4) and the evaluation of equivalent gray-plane emissivity for other tube arrange-
ments and for ordered arrays of other shapes are presented elsewhere ([1], pp. 31-36; 38; 112-118; 439-

441},

The Gas Model

Radiation measurements on the products of combustion, chiefly carbon dioxide and water vapor, have
been made — both total-radiation measurements and spectral; and molecular models now exist which are
in good agreement with both kinds of measurements. For many calculations all that is needed is a graphi-
cal representation of the total emissivity of the flue gas as a function of partial pressures of the radiating
components, path length, and temperature; and a method of obtaining absorptivity from emissivity. These
are available. If in the design of a furnace, however, allowance is to be made for multiple reflection and
for gas temperature gradients, then total-emissivity data do not suffice, There are two alternatives. One
is a complete quantitative description of the spectral details of molecular radiation from the gas component
in question in the form, sometimes, of data on hundreds or even thousands of wavelength intervals, to-
gether with suitable band models. The calculation time, especially when search is for the furnace-tem-
perature field which satisfies furnace-operating conditions, is forbiddingly large. The second and pre-
ferred approach is to represent the real-gas total-emission characteristics as an e-function series of the
form

s 3 01— ), o

where p is the partial pressure of radiating constituent, L is the mean beam length, k is an absorption co-
efficient and @ is a weighting factor. This series may be visualized physically in either of two ways: as
representing the a-weighted sum of n gray gases acting independently, or as representing n spectral re-
gions or bands into which the gas is divided. Although there is an enormous variation in kA with wavelength
A for real gases, the restriction of interest to a moderate range of temperature and of pL permits fitting
the true &;4¢q1—T—pL relation of the gas in question with a very small number of terms — never more than
three gray gases plus one clear gas (or 3 bands plus one window). Even the simplest model — one gray plus
one clear gas, or one-band-plus-window model — suffices for many problems.* For that model

e=a(l—e = a(l—e™*), (6)

The allowance for effect of temperature can, over a moderate range, be taken care of by assuming

the k's to be temperature-independent and letting ¢ = ¢(T).

The same formulation, with the same k's, can be used to represent absorptivity o except for the fact
that ¢ is now a function not of the absorber temperature but of that of the radiation source. If oy, is the ab-
sorptivity of gas at T, for radiation from a source at T,,

*The one-gray-plus-clear gas model suffices, however, only for the range of pL which characterizes a par-
ticular problem; when the characteristic dimension or temperature range changes, so must k and a,
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Fig. 2. Equivalent furnace cross section.
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Recent comparisons of radiation received at the end of a gas path along which the temperature varies
widely have been made, using (a) the lengthy calculations associated with a 600-constants representation of
molecular radiation, and (b) the mixed-gray gas model based on fitting the 3-gray-plus-one-clear gas model
to atotal emissivity — temperature —path length relation derived from the same primary source. Over all
practically interesting ranges of variation in temperature along the path, and in total path length, the two
methods were in excellent agreement, On the last type of problem to be considered in these notes, method
(a) of supplying the gas radiation would produce an impasse,

The Well Stirred Furnace

Many industrial furnaces operate with sufficient momentum in the entering air and/or fuel to assure
a reasonably well stirred combustion chamber, and to justify the assignment of single values to the com-
position and temperature of the radiating gases in the chamber. That assumption will be made here. The
furnace, with tubes replaced, becomes a box containing heat-sink surface A, at known temperature T, con-
trolled by the feed of the process stream, refractory surfaces designed by Ay (or by Ar, Ag, Ag if allowance
is to be made for Ty variation) at an unknown equilibrium temperature Ty, and radiating gas at an unknown
temperature Ty. The two unknowns Tg and heat-flux Qg¢1 necessitate two equations, an energy balance
and a heat-transfer relation. Consider the latter,

(1) Gray Gas. A simple and useful model is based on the assumption that all the refractory is at the
same unknown temperature, the sink is gray, and the gas is gray. If the sink is black, the total net inter-
change between gas and sink by all mechanisms — direct, multiply-reflected, and via refractory radiation
— per unit difference in black emissive powers of gas and sink is called (GSy)R plack. having the dimensions
of area and called the total-exchange area,

A — (Al + ——f‘—r—) . ®)

g
Q-
(I—ex) Fpy

The view-factor Fy; is the fraction of all the radiation leaving Ay if black, which, without gas absorption,
arrives at A, Since AF,. = A, Fy, and since for the present simple configuration Fy,. = 1, Fyy = AjA;.

When the sink is a gray Lambert surface the gas-sink flux is given by

Quey = (GS))r0 (Tg —T1) ©)
with
1 1 1 1
S — +— (--1). (10)
(GSy)r GSI)Rblack A \g

In this expression A, is the area of the plane replacing the row of tubes and their refractory backing, and
g, is its effective emissivity, given by (4).

The above treatment could have included allowance for variation of temperature over the refractory
surfaces and for variation of the field of view of Ay, but at the expense of using matrix methods and, prob-
ably, machine computation ([1], 302-305; 368-375); and allowance could also have been made for departure
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Fig. 3. Thermal performance of well stirred chambers. Reduced efficiency Q, as 2
function of the reduced firing density, D', and 7: 1) radiation sections of tube stills; 2)
domestic boilers; 3) soaking pits; 4) open hearths; 5) gas-turbine conductors.

from diffuse reflectance at Ay ([1], 177-186); but the end product would in each case be a single (GS)R for
use in Eq. (8).

(2) Nongray Gas. In systems in which the walls are not dark gray the calculation of transmission
through the zones of a system must take into account the variation of gas transmittance with wavelength,
In the spectral regions of strong band absorption the radiation from a zone will be attenuated after a short
passage through the gas, whereas in the spectral windows or in weak absorption bands substantially com-
plete absorption may occur only after reflection at several walls, It is apparent that exchange between
zones i and j is then inadequately described by a single 8;8;; the quality of the radiation will change. And
at refractory surfaces the energy absorbed at a wavelength of strong band emission from the gas will be
reemitted as black radiation capable, in part, of passing through the windows in the gas spectrum,

Allowance for absorption-coefficient variation may’be made as rigorously as desired by representa-
tion of the gas emissivity and absorptivity as those from a weighted sum of gray gases (Eq. (5)). But since
ayn depends on the radiation source temperature, GS based on a's and k's will apply to a specific net direc-
tion of radiative transfer, designated by GS if from gas to surface and GS or SG if from surface to gas.
Furthermore, allowance cannot be made in GS for refractory-assist, because A, though in overall radia-
tive equilibrium is no longer in equilibrium with respect to radiation of a specific ki; it may be a net ab-
sorber in the spectral region of k; and net emitter in the region of kj. Consequently, refractory surfaces
are now classed as source—sink type rather than radiative-equilibrium type, The general treatment is in-
volved ([1], 310), but a geometrically simple idealization of great practical utility yields a simple closed-

form solution, That is the case of a nongray gas (1 gray plus 1 clear), single gray sink A,, and single gray
refractory surface A,,

The latter is here temporarily designated by A, — a source or sink — rather than by Ar because of
its above-~discussed ambivalent character. It may be shown that the net flux Qg;t1 is given by

1

Qs = [Egl‘f“ —‘I‘”—L“_“J G(Tz’—“ﬂ)' (1)

§1§2 Gs,
The term in the bracket, allowing as it does for the radiation from gas to A with the aid of the no-flux sur-
face A, acting as a source in some spectral regions and sink in others, is properly designated (GS;)r. The

double~ended arrows indicate that, though allowance has been made for the difference in absorption and
emission, the factor is applicable to flux in either direction.

A simplification comes from considering surfaces A; and Ay to be intimately mixed, the "speckled-
furnace model," Every spot on the walls has the same view of A; and Ay and "sees™ A, throughout the solid-
angle fraction A;/(A; + Ay), designated by Cg, the "cold-surface™ fraction of the furnace walls. Though the
speckled-furnace assumption is a rather poor one for the present furnace, it is quite good for many furnaces
in which the heat sinks, adding to A, are distributed over several wall, roof, and floor areas. For a
speckled enclosure confining a nongray gas represented by a one-gray-plus-one-clear gas or one-band-
plus-window model, and with subscript r replacing 2, (GS))R is given by
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In this, AT is the total envelope area of the furnace chamber A; + A, ag is the value of @ corresponding

to the gas temperature, and eg e is the equivalent gray emissivity. The last term comes from dodging the
need to express GS and GS separately; this can be done provided &g is evaluated at the arithmetic mean of
Tg and T, and then multiplied by a factor (4 + a' + b — ¢)/4 where a' (unrelated to a or ag) = dln ag/a InpL,
b = 8lngy,/dln Tg, ¢ = 0.65 for CO,, 0.45 for H,O, 0.5 for average flue gas. The factor may be ignored and
&g, evaluated at Tg, used instead when T, < Tg/z. The value of ag in any case is obtained from fitting the
emissivity &g, at the mean-beam length Ly, of the system and at twice or three times that length, to the

gray-plus-clear gas model to give 2
ag=____ ®km | (13a)

2Sg,Lm — 8L,

2&5, L
= g for Ly and 3Ly, (13b)

8% 3-[4(eg. 3L/ b, Ly~ 31

The derivations of Eqs. (11) and (13a) appear elsewhere ([1], 317-320; 250).

Equation (12) is relatively simple considering the complexity of the radiative processes for which it
makes allowance.

(3) Gray Gas, Speckled Walls. If the simpler gray gas model represented by Eqgs. (8) and (10) is
converted to the speckled-wall model (F,.; — C), those equations yield
Ar . 14
@)= 1 7 (14)

— 1

Cssl EE

a relation of extraordinary simplicity. Equation (14) will be used for combination with an energy balance.
Let Hp represent the enthalpy in the feed stream (air and fuel) entering the chamber per hour, measured
above a base T. For this simplified treatment the external losses from the furnace and the internal con-
vection to the sink and refractory surfaces will be assumed negligible. An energy balance then yields

Hr —Qezi _ Ty—Ty (15)
HF TAF -_— TO
This is both an energy balance and a definition of T pg, which is that adiabatic flame temperature (HF/Ir'le)
obtained by ighoring dissociation and by using, over the interval T to T pop, the same mean heat capacity
of the gases as is applicable over the interval T, to the outlet gas temperature Tg. Elimination of Tg be-
tween (14) and (15) and dropping of subscripts on Q yields
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Let the following dimensionless groups be defined: Q' the reduced furnace efficiency, the actual efficiency
Q/HF times the temperature ratio (Tpp — T)/TaF; D' the reduced firing density; Hp/(0(GS)RTHp(T AR
— Ty)) the ratio of energy input to a kind of radlatmg ability; 7 the ratio of sink temperature T, to pseudo-
adiabatic flame temperature T pp.

In terms of the new groups, (16) becomes
QD + vt = (1— Q). (17)

Furnace efficiency is seen to be a function only of firing density and relative heat-sink temperature,
and the firing density term makes due allowance for such operating variables as fuel type or excess air or
air preheat which affect flame temperature and gas emissivity, for fractional occupancy of the walls by
sink surfaces, and for wall emissivity, The function represented by (17) is plotted in Fig. 3, which permits
several interesting conclusions:

1. As the firing rate D' decreases, efficiency rises and approaches 1 — 7 in the limit,
2. Changes in sink temperature are unimportant if 7 < 0.3,

3. As the furnace-chamber wall approaches complete coverage by a black sink, i.e., as Cq&y ap~
proaches 1, the effect of flame emissivity on D' becomes one of inverse proportionality. At ex-
tremely high firing rates where Q' becomes inversely proportional to D!, the efficiency varies
directly as gas emissivity €,; but at low firing rates, characteristic of many furnaces, the ef-
fect of gg is much less,

4. When the furnace wall is well covered with refractory surfaces and/or the sink is not black (Cg&,
« 1), a change of flame emissivity produces a much less than proportional change in heat trans-
fer.

Equation (17) and/or Fig. 3 constitute a basis for classification of furnace types, some of which are
indicated by the range of variables in which they operate.

When the furnace is not so well stirred as to justify the assumption that the enthalpy temperature of
the leaving gases is the same as the mean radiating gas temperature, allowance can be made by assigning
a value A to the difference

AZ%@M@{@;MMHWW‘ (18)

This has the effect of inserting +A/T pp inside the bracket of Eq. (16) or A(=A/Tap) inside the parenthe-
sis of (17). It has been found empirically that a value of 250-300°F suffices to make the modified equations
fit remarkably well the data on a number of furnaces characterized by a rather high Cg & (above 0.5). Rig-
orous calculations of far more sophisticated furnace models produce results which are illuminatingly ana-
lyzed by plotting on the coordinates of the figure representing (17) ([1], 463- -470).

The Long-Furnace Model without Axial Radiative Flux

We have so far restricted interest to furnaces so well stirred that a single temperature can charac-
terize the radiating gases. The other extreme is the long furnace, for which a cross section normal to the
gas-flow direction will again be represented by Fig. 1. As before, the first step is replacement of tubes
and their backwall by an equivalent gray plane, to give the cross section in Fig. 2. This furnace system
is characterized by three assumptions:

1, combustion occurs so rapidly compared to total gas residence time in the furnace that the gas tem-
perature at the burner end is the adiabatic flame temperature (though this assumption can be mod-
ified by using data on actual furnaces);

2. the furnace length in the direction of gas flow is so great compared to its height or width that net
radiative flux in the x-direction (gas-flow direction) may be ignored relative to flux normal to it;

3. the gas at any flow cross section has a mean radiating temperature and mean enthalpy temperature
which are the same.
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From these assumptions it follows that the local flux density g at the sink at the downstream distance
x is expressible in terms of local gas and sink temperatures and the local configuration — the shape in
cross section and the disposition of sink and refractory surfaces. Thus gz .y = qgy (Tg, Ty, Py), where
P,, the perimeter occupied by the sink furnaces, is a partial measure of the shape at x. Similarly, the
local external losses to surroundings at T, may be represented by dgo = dgyp (Tg, Pr), where P, is the
perimeter occupied by refractory surfaces from which there is an external loss. In the length dx the net
energy flux from the gas ng,net is given by

dQ¢ ner = qg=1p 1% + GyoPdx = — dH,

where flg is the enthalpy per hour in the furnace gases passing a point (= rﬁdeTg), and

GoesPs = CR (T —Th + VP, (T, — T, (19)
The last term represents convection to the sink, and (G~S1)R/ L represents the total-exchange area per unit
length of furnace. This exchange area is calculated for a three-dimensional system, as though a spot on
the sink sees upstream and downstream as well as across; but its downstream view is as much colder than
its cross view as its upstream view is hotter, and it receives radiation as though the whole furnace temper-
ature pattern is the same as the temperature pattern at the cross section at x. The term (GS;)R can be
calculated with any degree of rigor desired; in the present example it could be assumed given by Eq. (12),
with Ap/L = P + Py, and Cg = Py/(P; + Py).

If the sink temperature changes significantly along the furnace — and in a "long" furnace it generally
does — another equation is necessary. If in addition the mean enthalpy temperature of the process stream
inside the tubes is different than T,, the tube skin temperature, still another relation is needed (this is the
case, for example, in catalyst-packed tubes), Let the hourly enthalpy of the sink H; be a known function of
its mean enthalpy temperature Tj; and let the overall heat-transfer coefficient U from tube outer skin T
to process stream temperature T be a known function of T{. The system of equations needed for a solu-
tion is then

:ig&;l _ fii& 6 (T —TY) + UsP, (Tg—Ty) + UoPs (Tg —To), )
x .
+dH, (T)) _ (GSpr o(Th—ThH +UP (T, —T), @
dx L ‘
Upy (T, — Tl) = _@Ll_)ﬂ_ g (Té — TT) +UP, (T, —Ty), )

U, is the overall heat-transfer coefficient through the refractory, gas to ambient air around the furnace.*
The sign of dH,;/dx indicates application to co-current flow of combustion gases and process stream,

Rigorous solution of two nonlinear simultaneous equations (20) and (21) in three unknowns, with non-
linear equation (22) used to eliminate Ty, would normally require machine computation. Inspection of Eq.
(20) indicates, however, that it is relatively insensitive to changes in T, because of the T4 term, This
suggests that the relation between Tg and T; be guessed, and the guess fed into (20), which can then be
written in the form

x H

j dx = jm s — 4 Ty .
; G 6(Th—TY +UP, (T — T + U, T T)

g, in

(23)

*The validity of expressing the heat loss from gas to outside air in terms of an overall coefficient, with re-
fractory temperature not mentioned, is conditional on the radiative equilibrium and gas-convective-equilib-
rium inside-refractory temperatures being the same. This is only true if convection, gas to refractory
surface, equals conductive loss through it. Such an assumption is generally justified. If it is not made,
(G—§1)R cannot be used because Ar changes from a radiative equilibrium to asource-sink type surface; one
more unknown is added, the temperature Ty; and an additional equation is needed. This will be an energy
balance on A,.. Two new total-exchange areas must be evaluated, GSy and S;Sy, and the enormous increase
in complexity is seldom justified.
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For every Tg the right side is calculable, and graphical integration from Hg (entering) to Hg gives the cor-
responding furnace position x, Three points on the curve (Fig. 4) often suffice to determine the total length
of a furnace with flue gases leaving at a specified Tg out. With the Tg—x relation established, Eq. 21 can
be integrated to obtain T{ vs Tg, with which knowledge (22) gives a new relation between Tg and T. When
Ty has a larger influence on (20), the above sequence is applied to small step changes in Tg, with conver-
gence established before the next step is taken.

Allowance for Effect of Gas Temperature Gradients on Radiation

In the models discussed so far, gas —surface exchange has been assumed to occur between a surface
and a uniform-temperature gas, with no intervening gas present at another temperature. Allowance for
gas temperature gradients enormously complicates the problem, and the engineer should think twice before
deciding on the need for more sophisticated models than those presented above, But if progress is to be
made in determining, without building and rebuilding furnaces, what the effects of their operating and de-
sign variables will be on the distribution of heat fluxes to the sink surfaces, there is no alternative to a more
nearly rigorous approach.

Consider an enclosure with gas and surface temperature varying throughout. A volume element dV;
will emit radiation of wavelength A in all directions at the rate 4k;\E}\’jde per wavelength interval, where
ky is the monochromatic absorption coefficient, and Ey is the monochromatic emissive power of a black
body — the Planck function. The resulting flux density r-distant would be, without attenuation, 1/nr? if taken
normal to r; and the transmittance will be e—fk)\(r)dr’ the term k, (r) indicating that k)t is expected to vary
along the path. The monochromatic intensity leaving a surface element dAj will be Wx,j/w, where W, is the
hemispherical leaving-flux density due to both emission and reflection. At an angle 6;; with the normal to
dAj and a distance r from it, the flux density due to dA;j will be reduced by the factor (cos eji/rz) times the
transmittance previously evaluated, From these principles one can write an energy balance on a volume
de within the total volume V enclosed by area A, which will include as inputs the emission from all volume
elements de and all surface elements dA; and absorption by dV;, convection from any surface touching

SCHEME 1. Energy Balance on Volume dV;

’ij —
emission to dV; from . —j‘ By (r)dr
as elements dV: 4, E, e °
g i dVi.g Y hi En € - Wik, d
5 v ary;
o
i av; {4y d - radiation emitted by
— f k?\. (rdr — 6 " ’ dV]_
emission to dV; from o v
.e 3
surface elements dA; T (’ j “‘&']‘__2’— cos 0j:dd ty  dh +dVy — [pistic)l rate of increase of
b} w i o enthalpy in dVj
—
+hdAp (Ty—T) — dVeyp (is +i) U
convection from any net enthalpy flux,
touching surface dAy  gensible and chemical
h into dV; -

SCHEME 2. Energy Balance on Surface dA;

r.
radiation emitted from ——j'” Ry, (r)dr «
de-'S and absorbed » j-w' - e 0 cos 0,;dV e, ; dh d4; j‘ & Ep ¢dh  emission by swface
at Aj ; o T h . p

0 m%',‘

,
bsorpti f radiation —Jk;h (r)dr = et 0 44 nlfrt ﬂu;( ex?‘acted

absorption of radiati w through surface
leaving surface dA}. A, j‘j‘ Wy, e cos B cos B;; dAje, ; dh "

4 arly +dA; =% enthalpy change with

time
+h(T]—T,)dA¢ - —_
convection to dA;
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dVi, enthalpy flux into dVi; and as outputs the radiative emission from dVi and, for the unsteady state, its
rate of energy absorption by enthalpy increase, Scheme 1 shows such a balance.

Similarly, an energy balance may be written on a surface element dA;j, Scheme 2.

The two equations are integro-differential equations, i.e., functions inside the integrals are tem-
perature-dependent, and the temperature field is initially unknown. In the pre-digital computer days the
simultaneous solution of these equations for a complex configuration would not have been considered feas-
ible, Today there are two broad approaches to the problem: one is to think of the volume and surface as
each being divided into many small isothermal zones, some of the zones having an unknown temperature
and known flux, others a known temperature and unknown flux. An energy balance may be written for every
zone of unknown temperature, yielding a system of nonlinear equations, in the limit an infinite matrix the
solution of which is a solution of the integral equations, Solution of a finite-zone system yields a close ap-
proximation to the desired temperatures; these permit evaluation of the unknown fluxes — the usual ulti-
mate objective of the analysis. There are no limits on the complexity of furnace geometry or of gas flow
pattern in the application of the method, and it is certain to find increasing use in making furnace design
more quantitative ([1], 365-377; 470-487).

The other way to approach the problem is to think not of zones and temperatures but of the radiation
field, the monochromatic intensity variation along every direction at every point for every wavelength, For-
mulation of the variation of intensity along one of these monochromatic radiation streams would then yield
a differential equation; and the whole field would be described by a multiply infinite number of such differ-
ential equations. Only for cases in which some sort of symmetry exists — for example, flux through layered
slabs or along systems with dominant temperature gradients in a single direction — is the concept useful.

It was suggested by Schuster and Schwarzschild many years ago for problems in astrophysics; it underlies
the two-flux method of obtaining gross approximations to scatter problems in slabs. An application appeared
by Roesler [2] on radiative transfer in furnaces, and the next subdivision here is based largely on his paper.

The Long-Furnace Model with Axial Radiative Flux

Consider again a long furnace of cross section as in Fig. 1 and equivalent cross section as in Fig. 2,
with P; and P, representing heat-sink and refractory-surface perimeters; and let the gas temperature and
sink temperature vary only with downstream distance x, as in the previous long-furnace treatment, For
maximum simplicity consistent with allowance for the radiation not being gray, let the gas radiation be
represented by the one band-plus-window model, Eq. (6)

g = a(l— e’kL).
This divides black-body radiation into the fraction e lying in the region of gas absorption and emission, and
the fraction 1 — & lying in the clear-gas portion or spectral window. Let the heat sink and refractory sur-
faces be gray, as before, with emissivities & and &,

Let the downflowing hot gas at Tg produce an enthalpy flux of Hg (Tg) or m Let the furnace be
co-current, with downward flux of process-stream enthalpy in the tubes demg"nate(ti)by Hy (T The mean
process-stream temperature T1 is lower than the outer tube-skin temperature Ty, and they are connected
by the relation

q per= UL(T1= T) (24)

where Uj is the overall coefficient of heat transfer from outer tube-skin to main body of process stream.
U} is assumed dependent only on the stream temperature Ty (it must be remembered that U; must be ad-
justed for being based on an artificial sink area, C/rD times the true tube area).

Let the furnace gases lose heat by convection to the refractory surfaces at the same rate as the con-
duction losses through the refractory walls and on to the ambient atmosphere at T, thereby making the loss
rate per unit furnace height PrUy(Tg—T(), where U, is the overall heat-transfer coefficient, gas to outside
air. Let the furnace gases lose heat by convection to the tubes at the rate UP(Tg—T), U, being adjusted
the same way as Uj.

Let the gas-flow cross section of the furnace be 8. Visualize a stream of radiation in the axial direc-
tion, divided into an upward stream and a downward stream and further divided spectrally into radiation ly-
ing in the band-fraction ¢ and the window-fraction 1 — a of the black-body spectrum. There are then six
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streams carrying energy along the x-direction, the hot gases carrying it down at the rate Hg, the process
stream carrying it down at the rate H1, the downwardly directed band-radiation stream at a rate designated
Bp, the upwardly directed band-radiation stream designated by By, and the two window-radiation streams
designated by Wpy and Wy These streams interact more or less with each other, with the tube surfaces P,
and with the refractory surfaces Py; and the problem is toformulate the space rate of change of each stream due to
coupling with the others. The space rate of change ng/dx of the gas stream, for example, will be due to its emis-
sion into the band-radiation streams By and Byy and its absorption from them, Thespace rate of change of the
downwardband-radiation stream dBp/dx will be due to its absorption of radiation from the gas, its emission, its
indirect reception from the upstreamband stream via reradiation from the refractory, its absorption of radiation
emitted by thetubes, and its reception from the window-radiation streams Wp and Wy via their absorption by the
reftactory surface and reemission partially in the band region of the spectrum. The six resulting differential
equations have been arranged in tabular form with dH,,/dx, dBp/dx, etc. along the left, the quantities or streams
fromwhich they receive energy along the top and the coefficients of those quantities, or coupling terms, in the
main body. The construction of Scheme 3 is based on the following principles:

a) the emission rate from a gas = 4kVEpR = 4kVng4 where V is the volume;
b) since an energy balance on a section Sdx through the furnace in steady-state yields the relation
d(Hg + By + By + Wy + Wy + Hp + Q0 /dx = 0,
the sum of the coupling terms in each column must be zero;

¢) at equilibrium

- - 4
Bpy = By = ang S,

- - 4
Wp = Wy = (1= a)o Tg §;

and at equilibrium each derivative term must equal zero, i.e., the sum of the products of the col-
umn headings, at equilibrium, by the coupling terms in a single row must become zero;

d) the coupling term for interaction of dHi/dx or ng/dx with B or W is the same for both directions,
D and U,

With these principles, there follows a sequence of steps for filling in the coupling terms:

1. Row 1, column 1. Since the volume corresponding to unit height is S, and the gas emits only in
the energy fraction a of the spectrum, the gas stream emits 4kaSo’I‘4g and the coupling term is

4kaS.

2. In Row 1, the above emission is exclusively, and equally, to streams By and Byy. Then the coef-
ficients on By and Bpy that satisfy (c) above are 2kS, each,

3. Since in the 0T column the only terms coupled to 0T besides dH,/dx are the dB/dx's acting equal-
ly, the coefficient on each dB/dx coupling it to “Té is 2kas, to satisfy (b),

4. The loss rate de/dx from the process stream due to direct radiation from the tube surface is
&, P;0TY; so the coefficient in the oT# column is — &P,

5. The only other streams affecting dI.{i/dx are the four streams B and W, and they act equally. Then,
to satisfy (c), each of the four coefficients is &,P;/2.

6. Consider the O'T column. Coupling terms additional to that in the dHI/dx row will appear in the
dB/dx and dW/dx rows only. Those affecting dB/dx will be proportional to a, the band fraction,
those affecting dW/dx to (1 — a), the window fraction; and there is no dlfference between down and
up. Then, to satisfy (b), the coefficients must be ag;P;/2 for each dB/dx and (1 — a)&;P;/2 for each
dw /dx.

7. In the dBp/dx row, 2kaS in the oT4 column must be balanced by a term which can only be in the
BD column, and to satisfy (c) the term must be —2kS. Also to satisfy (c) the term ag;P,;/2 in the
oT4 column must be balanced by —&;P,/2 in the Bp column. But that part of the rate of change of
downward band flux which is due to Bp itself is equally related to tubes and refractory; so if
—&;Py/2 is present, so must —&,P./2 be. In addition, in the same box there must be —2kS to off-
set the +2kaS in the same row under O'Té. and thereby satisfy (c).
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8. By symmetry, if —2kS, ——E1P1/2, ~&,P,/2 is present af the intersection of dBD/dx and Bp, the
same must be present at the intersection of —dBy/dx and By.

9. In the dWp/dx row, since (1 — )& P,/2 appears as the coefficient of 0T}, a term to offset it must
appear in the same row, logically in the WD column, and to satisfy (c) the term must be —&P;/2.
But if the window-radiation stream is decreased by its own direct flux to P; there must be an
equivalent direct flux to Py; so —&pPr/2 belongs in the Wp column as well,

10. By the same argument or by symmetry, the same terms — &P,/2, —&.P./2 must appear, if in the
dWp/dx — Wy intersection, then also in the —dWy/dx— Wy intersection.

11. In the Bp column and the dBp/dx row the coefficient —g,Py/2 represents loss from the By stream
to the refractory surface. The latter gives this up to all four radiation streams, equally to Byy
and back to By, in proportion to 4, and equally to Wy + Wy in proportion to (1 — a) (corresponding
to refractory-absorbed band radiation reemitted as window radiation). To make the four coefficients
add to &,P,./2 and satisfy (b), they are aeyPy/r for each dB/dx and (1 — a) &,Py/4 for each dW/Ax
in the Bpy column,

12, The same argument puts the same four coefficients in the next (B) column,

13. Symmetry puts the same four coefficients in each of the next two (Wp + W{j) columns; and this
also satisfies (c).

This completes the set of equations, except for the obvious terms in the bottom row and last three
columns, representing convection, Roesler says that in a typical steam reformer, convection to the tubes
amounts to no more than one per cent of the total transfer.

The formulation of equations is necessarily inexact in several respects. For example, (1) flux from
and to the gas and to and from the By and By streams is not the full 2kS due to boundary wall effects. The
error is greater the smaller kvs. The effect is to reduce axial flux., (2) Radiation leaving Wy for the tubes
and not absorbed is assumed to continue downwards in Wp, whereas by diffuse reflection some of it joins
Wy.

To find a solution to the set of equations it is necessary to fix as many boundary conditions as equa-
tions, Comments on these and on additional requirements for solution follow:

1. Hg and H; are known at x = 0 because feed conditions are specified, Tg(O) would however be the
adiabatic flame temperature T ap if it were assumed that combustion were instantaneous. Roesler
assumes instead that there is a penetration depth L in which burner jet mixing assures a much
lower initial temperature; and the discrepancy between Hg and Ty in that range is handled by put-
ting in an artificial source function, added to the expression for ng/dx, and corresponding in ef-
fect to delayed conversion of chemical to sensible energy and/or back-mixing. The exact form of
the source function is not critical, only the magnitude of the difference between the Hg of the feed
stream and the Hg corresponding to the chosen initial gas temperature Tg(0).

2. The difference between Ty and T{ necessitates introducing an additional condition. The flux den-
sity of radiation incident on a wall at any level x is the arithmetic mean of (Bp + Wp)/S and (By
+ WU)/S, from which the net flux density at the tube skin can be expressed two ways, giving
Bp + By + Wp + Wy —OT
28

(25)

(T;=T}) Uy = g + Uy (Tg=Ty)

3. The radiant streams are inter-related at the refractory ends of the system. When By strikes the
top, (1 — &p) is reflected to put (1 — &,)By; into stream Byy; and &y is absorbed and reradiated, putting
ae, By into Bp and (1 — a)&, By into Wpy. When Wy strikes the top (1 — €)Wy is reflected into
Wp, &,Wy is absorbed and reradiated, ae, Wy into Bp and (1 ~ ¢)€,Wy into Wp. From this, Bp
and Wp are known if Byy and Wy are given.

Bp = (1 = &) By + a5, (By + Wy
Wp = (1= &) Wy + (1 - a) & (Wy + By) (27)

Similarly at the furnace bottom, By; and Wy can be found if Bp and Wp are given; interchange
subscripts U and D in (26) and (27).
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4. A first choice of Tg(0) is made satisfactorily by assuming that its space rate of change at x = ¢
is negligible, that the gas is consequently in equilibrium with the local band radiation stream, or
that

Bp (0) + By (0)

oT:(0) =
8 245

5. The equations are nonlinear and numerical integration is the only possibility, Roesler's com-
ments on the difficulties of solution are illuminating, Values for B and W at the furnace top were
chosen for a first trial, satisfying Eqs. (26) and (27). The intention was to march down the fur-
nace with all six equations (he did not include any convection in his treatment) changing the top
guesses until the equivalents of Eqs. (26) and (27) were satisfied at the bottom; but calculational
instability prevented use of this method. When, instead, the equations were integrated in the di-
rection of the radiant stream, those for Bpy and W) from the top down and those for Byy and Wy
from the bottom up, convergence was satisfactory.

This method of predicting furnace performance is limited in scope to that class of furnaces in which
gas temperature varies primarily in a single direction, but the class of such furnaces is a large one, The
method has apparently had considerable practical use in England,

Note, Toallow for the effect of temperature on gas emissivity k was assumed proportional to 1/ Tgand a
assumed constant. From our work with the zone method it is clear that &g can be represented over a far
wider range of Tg by assuming a to be a function of T and k constant,

Time prevents an exposition of the zone method (or a variation on it, the zone-to-point method), which
has been extensively used in MIT studies of furnace performance and is presently being used in a study
of interaction between natural convection and radiation in glass-furnace melts.
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